The first star explosions were gigantic – and asymmetrical

After a star with significantly more mass than the Sun has consumed all its fuel, it decays into a massive firework display, a supernova. In today’s universe, that is not a very common sight, because the greatest percentage of stars is made up of red dwarfs, which end their lives not nearly so spectacularly. Our Sun is also not destined to turn into a supernova. It will grow into a red giant and then, at the end, only a harmless white dwarf will remain.

In the early universe, however, things were much different. At that time, there were neither red dwarfs nor stars around the size of our Sun. Instead, the much smaller universe at that time was filled with giant stars that today would be classified in so-called Population III. They were made only of what the big bang had supplied for them: hydrogen, helium, and a bit of lithium. But the composition of the cosmos changed as these early stars ended their short, but energetic lives. Their explosions created the first heavy elements that would accumulate to form stars of the younger Populations II and I.

Previously, researchers assumed that supernovae during the early universe were no different than today’s explosions. In today’s universe, stars explode in all spatial directions simultaneously, as would be expected. Thus, the explosion’s wave front is a sphere. But a research team from MIT noticed something strange from the star HE 1327–2326: it contains an unexpectedly large amount of zinc. The star HE 1327–2326, which is only 5,000 light-years from Earth, contains so few heavy elements that it clearly belongs in Population II, which contains stars created directly after the first stars. Thus, it was born from the material ejected from the first supernovae.

There’s just one problem, however. The relatively high percentage of zinc cannot be explained with a normal supernova. Normal supernovae would simply not produce enough zinc. The MIT researchers thus ran simulations of supernova explosions in computers. The surprising result: enough zinc is produced only if the progression of the explosions is not symmetrical. Instead, the explosions must have developed jets directed in opposite directions (see the picture below), in which zinc was then created. Such a supernova must have been five to ten times more energetic than originally assumed. The astronomers have even theorized that most supernovae in the early universe developed in this way. It could also be possible that the much stronger explosions might have more strongly influenced the development of the universe during the reionization era than previously thought.

The shape of a supernova in the early universe, approximately 50 seconds after the start of the explosion (simulation, picture: Melanie Gonick)
Rana Ezzeddine and Anna Frebel from MIT discovered that the first stars exploded asymmetrically (picture: Melanie Gonick)

6 Comments

  • Brandon, I’ve noticed on Kindle quite a few books in german that haven’t been translated to english at all which quite confused me. One of the biggest issues i have noticed is that in german, there are 5 Ice Moon books, one of them being called Jupiter and having a German blurb which I translated but the actual content of the book (I only read a sample) is set in 2076 with Arthur Eigenbrod from the books Silent Sun and The Rift, so could you please explain this to me?

    • Hi David, don’t worry, the books are coming out in the correct reading sentence. Jupiter (Ice Moon 5) is set in the time after Silent Sun and The Hole but revolves around something that happened on the ILSE’s second return trip and before The Hole which was untold before. If you read The Hole, you might have noticed that the asteroid miners find someone on board of a small rocket. How did he get there? That’s the story of “Jupiter”.

      • OK thanks so much!

        • I’m going to have to read The Hole again 🙂

  • Hi, Brandon
    I purchased your Mars trilogy before realizing it’s in German. I got my credits back so no problem. When will you make them available in English ?
    I would really like to buy these three books
    Best to you,Don

    • Hi Don, the books will be available this year (e-book and paperback) but I don’t have details for the audiobooks yet, I’m sorry …

Rispondi a David Eyal Annulla risposta

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

BrandonQMorris
  • BrandonQMorris
  • Brandon Q. Morris è un fisico e uno specialista dello spazio. Si è occupato a lungo di questioni spaziali, sia professionalmente che privatamente, e mentre voleva diventare un astronauta, è dovuto rimanere sulla Terra per una serie di motivi. È particolarmente affascinato dal "what if" e attraverso i suoi libri mira a condividere storie avvincenti di hard science fiction che potrebbero realmente accadere, e un giorno potrebbero accadere. Morris è l'autore di diversi romanzi di fantascienza best-seller, tra cui The Enceladus Series.

    Brandon è un orgoglioso membro della Science Fiction and Fantasy Writers of America e della Mars Society.