New NASA simulations: what it’s like around a black hole

A black hole grows by being fed from a so-called accretion disk that supplies it with fresh matter. This disk is made up of plasma, ionized gas that orbits in continuous spirals around the black hole at high speeds. This plasma is constantly heated by internal collisions.

To an observer, however, an accretion disk won’t look like a classic disk (like, for example, Saturn’s rings). This is because a black hole generates such an unbelievably large force of gravity that radiation from the rear part of the disk becomes distorted as it moves toward the observer. Now, researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, have reenacted this in impressive, mesmerizing computer simulations.

From these simulations, you can see that not only does the rear part of the disk appear almost perpendicular to the front of the disk when you view it edge-on, but there are also nodes that constantly form and dissipate owing to magnetic fields winding and twisting their way through the plasma. In the immediate vicinity of the black hole, the ionized atoms nearly reach the speed of light, while the disk rotates more slowly farther out. This difference leads to the result that the bright nodes are stretched and broken apart, which can be seen in the disk as light and dark bands.

A second phenomenon can also be seen in the visualizations: the photon ring. It forms so close to the black hole that only matter rotating at the speed of light (thus, photons) can be in this zone.

Even more interesting is if the black hole is not static but rotating (which is the normal case). Of course, what you’re looking at is not the hole itself, but the accretion disk forming hypnotizing patterns.

All of the simulations can be viewed at the following page: https://svs.gsfc.nasa.gov/13326 (if the page doesn’t load, try again at a different time of the day; it seems to be very popular right now)

A rotating black hole (animation: NASA’s Goddard Space Flight Center/Jeremy Schnittman)
Accretion disk of a black hole, viewed directly edge-on (animation: NASA’s Goddard Space Flight Center/Jeremy Schnittman)
What there is to see around a black hole (picture: NASA’s Goddard Space Flight Center/Jeremy Schnittman)

Leave a Comment

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

BrandonQMorris
  • BrandonQMorris
  • Brandon Q. Morris è un fisico e uno specialista dello spazio. Si è occupato a lungo di questioni spaziali, sia professionalmente che privatamente, e mentre voleva diventare un astronauta, è dovuto rimanere sulla Terra per una serie di motivi. È particolarmente affascinato dal "what if" e attraverso i suoi libri mira a condividere storie avvincenti di hard science fiction che potrebbero realmente accadere, e un giorno potrebbero accadere. Morris è l'autore di diversi romanzi di fantascienza best-seller, tra cui The Enceladus Series.

    Brandon è un orgoglioso membro della Science Fiction and Fantasy Writers of America e della Mars Society.